IMDB Review Sentiment Prediction

Fengruo Zhang, Maocheng Xiong, Yuge Song, Zekai Han

Dec 15, 2023

Abstract

This study revolves around the exploration
and analysis of the IMDB Dataset of 50,000
movie reviews, designed for binary sentiment
classification. The primary objective is to an-
alyze the relationship between the textual con-
tent of reviews and the sentiments expressed.
Using a diverse array of models, including Lo-
gistic Regression, K-Nearest Neighbors, Linear
and Quadratic Discriminant Analysis, Random
Forests, Gaussian Naive Bayes, and Support
Vector Machine, we aim to uncover patterns
and nuances within the language of movie re-
views.

1 Introduction

IMDB, or the Internet Movie Database, is one of the
most popular and extensive sources of entertainment-
related content on the Internet. It provides information
about films, television series, video games, and the peo-
ple involved in their production. On IMDB;, users can
rate movies and TV shows, and they can write and read
reviews, providing insights and opinions about the con-
tent. The primary goal of this project is to construct
statistical models capable of predicting ratings based
on the content and sentiment expressed within the re-
views. Ultimately, we will decide which model has the
highest predicting accuracy.

2 Data Pre-processing

In the beginning, We perform data pre-processing
for the preparation of applying our models.

2.1 Data Description

Our dataset comprises a collection of 50,000 movie
reviews, with each review accompanied by a few sen-
tences and a corresponding sentiment indicator, show-
ing whether the review is positive or negative. Addi-
tionally, we are given two separate files, each containing
positive sentiment words and negative sentiment words,
respectively.

2.2 Data Cleaning

To address formatting issues within the reviews, the
initial step involves the removal of special characters,

such as brackets and parentheses, by using regular ex-
pressions. Additionally, we eliminate extra spaces be-
tween words for the uniformity of the textual data. To
standardize the dataset further, we convert all words
to lowercase. Finally, lemmatization is applied to the
reviews, so we can reduce the words to their root forms.
This method ensures a comprehensive transformation,
exemplified by instances where words such as “running”
are lemmatized to “run,” and “better” is reduced to
“good. (Khyani et al. 2021)” By implementing the
above multi-step preprocessing approach, the reviews
are refined to a standardized format for data vectoriza-
tion.

2.3 Data Vectorization

We begin this process by reading both positive
and negative files containing sentiment-specific words,
and then we amalgamate them into a single vocabu-
lary list. Subsequently, we create a vectorizer using
the CountVectorizer from the scikit-learn library. This
transformative process involves converting the textual
content of reviews within our dataset into a numerical
matrix denoted as X, with several parameters being set.
Specifically, we set the threshold of the max features to
be 1500 to avoid overfitting. Then, we only consider im-
portant but not abusively use words by setting the doc-
ument frequency between 0.1 and 0.7 inclusively. Fur-
ther, leveraging the Natural Language Toolkit library,
we exclude common English stop words, such as “and,”
“the,” and “is”, which are considered to contain mini-
mal meaningful information.

Finally, we convert sentiment labels from string to
integer datatype. If the sentiment is positive, the cor-
responding element in y is set to 1; if the sentiment is
negative, it is set to 0.

2.4 Principal Component Analysis

PCA is a popular method for reducing the dimen-
sion of a dataset because it can be applied to any data
matrix to capture the structure of data (Wold et al.,
1987). So we reduce the dimension of our dataset by
principal component analysis(PCA) to get rid of the
curse of dimensionality.

Firstly, we apply a hyperparameter tuning process
to select the optimal value for the n_components of
PCA. We get the information about the explained vari-
ance and plot the cumulative variance as shown in Fig-
ure 1.

e o o
= o @

Cumulative Explained Variance

e
~

[1000 2000 3000 4000 5000 6000 7000
Number of Components

Figure 1: Cumulative Explained Variance vs. number
of components

We select n_components to be 1100, which explains
90% variance. Therefore, the dimension of our new
dataset, reduced_X, is 50000 x 1100 now.

2.5 Data Splitting

Before training models, we randomly divide the
dataset, both reduced_X and y, into training and test-
ing sets in an 8:2 ratio to test our model performances.

2.6 Hardware Accelerator

We utilize a hardware accelerator, the T4 GPU,
to accelerate the execution of algorithms including K-
nearest neighbors and support vector machine. After
applying principal component analysis to reduce the di-
mension of the dataset, we still need to treat a dataset
with the dimension of 50000 x 1100. Therefore, we have
to overcome the unexpected computational challenges.
T4 GPU, allowing performing calculations simultane-
ously because of parallel processing, increases the effi-
ciency of implementing K-nearest neighbors and sup-
port vector machine to our dataset.

3 Experiment

3.1 Logistic Regression

Logistic regression, a supervised machine learning
algorithm, is primarily employed for classification tasks.
Its objective is to predict the probability of an instance
belonging to a specific class. Despite its name, logistic
regression is used in classification rather than regres-
sion. It utilizes the linear regression function’s output
as input and applies a sigmoid function to estimate the
probability for the designated class. This approach is
instrumental in predicting categorical dependent vari-
ables based on a set of independent variables.

For our model, we also add the [2 penalty. In
this way, we can prevent a large coefficient to avoid
overfitting. Meanwhile, Ridge Regression ensures com-
putational advantages because it only fits a single
model(Pereira et al. 2015).

After training the Logistic Regression model, we
generate the following results from our testing dataset:

precision recall f1-score support

0 0.87 0.84 0.85 4957

1 0.84 0.87 0.86 5043

accuracy - - 0.85 10000
macro avg 0.86 0.85 0.85 10000
weighted avg 0.86 0.85 0.85 10000

Figure 2: Relative metrics of logistic regression

Receiver operating characteristic

1.0

e
®

4
o

True Positive Rate

o
kS

0.2 4

e —— Logistic_Reg (area = 0.85)

0.0 0.2 04 0.6 0.8 10
False Positive Rate

Figure 3: ROC of logistic regression

We can see that this model fits well to both true and
false categories, and has a high accuracy.

3.2 Gaussian Naive Bayes

Gaussian Naive Bayes (GNB) is a classification tech-
nique relying on a probabilistic approach and Gaussian
distribution. This method assumes that each param-
eter (features or predictors) independently contributes
to predicting the output variable. The collective pre-
dictions of all parameters yield a probability for the de-
pendent variable’s classification into each group. The
ultimate classification is assigned to the group with the
highest probability (Martins, 2023).

After applying this method, we have results as fol-
lows:

recall f1-score support

0 0.65 0.78 0.71 4957

1 0.73 0.58 0.65 5043

accuracy - - 0.68 10000
1macro avg 0.69 0.68 0.68 10000
weighted avg 0.69 0.68 0.68 10000

Figure 4: Relative metrics of Gaussian Naive Bayes

Receiver operating characteristic

101 =
-
,"/

0.8 4 1‘,
o /”
v 0.6 e
= e
7 7
& L
2 0.4 .~
= e

"
-
-~
0.2 ,/'
-~
Vd —— GNB (area = 0.68)
0.0 T T T T
0.0 0.2 04 0.6 0.8 10

False Positive Rate

Figure 5: ROC of Gaussian Naive Bayes

The performance of this model is not satisfactory,
because low precision and recall imply that this model
does not return enough relevant true results. In other
words, the accuracy of this model is small.

3.3 Random Forests

A random forest serves as a machine learning
method employed for addressing both regression and
classification challenges. It employs ensemble learning,
a technique that amalgamates multiple classifiers to ad-
dress intricate problems.

Comprising numerous decision trees, a random for-
est algorithm creates a ‘forest’ that undergoes training
via bagging or bootstrap aggregating. Bagging, rec-
ognized as an ensemble meta-algorithm, enhances the
accuracy of machine learning algorithms.

The algorithm determines its outcome based on the
predictions of these decision trees, averaging or tak-
ing the mean of their outputs. Enhancing precision is
achieved by increasing the number of trees.

In contrast to a decision tree algorithm, a random
forest overcomes its limitations. It mitigates overfitting
issues in datasets, thereby improving precision. More-
over, it generates predictions with minimal configura-
tion requirements in packages(Mbaabu, 2020).

For our model, after fitting the randomized search
cross-validation to our dataset, we get the best parame-
ters set. We choose 15 trees in the forest, 10 maximum
depth of the tree, 5 minimum samples required to split
an internal node, 3 minimal samples required to be at
a leaf node, and using the whole dataset to build each
tree. Meanwhile, we utilize the Gini impurity function
to measure the quality of a split. Our results are as

follows:
precision recall fl-score support
0 0.80 0.72 0.76 4957
1 0.74 0.82 0.78 5043
accuracy - - 0.77 10000
macro avg 0.77 0.77 0.77 10000
weightedavg | 0.77 077 0.77 10000

Figure 6: Relative metrics of Random Forest

From these results, we can find that this model’s
precision and recall show an imbalance in the results.
So this model may not fit our data well.

3.4 Linear and Quadratic Discriminant
Analysis

Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) are classic classifiers, fea-
turing linear and quadratic decision surfaces, respec-
tively. Known for their closed-form solutions, inher-
ent multiclass support, practical effectiveness, and ab-
sence of hyperparameters, they provide versatile classi-
fication.

LDA offers supervised dimensionality reduction,
projecting input data onto a linear subspace for optimal
class separation. This strong dimensionality reduction
is particularly meaningful in multiclass scenarios.

For LDA, in our cases, we assume the data are
drawn from a Gaussian distribution with a common
covariance matrix in each class. Also, we choose the
solver to be Singular Value Decomposition, which does
not compute the covariance matrix and can perform
better for our dataset with a large dimension. The only
difference QDA has is that it does not assume the same
covariance matrix in each class.

Our results based on these two methods are:

precision recall fl-score support

0 0.87 0.81 0.84 4957

1 0.83 0.88 0.85 5043

accuracy - - 0.85 10000
macro avg 0.85 0.85 0.85 10000
weighted avg 0.85 0.85 0.85 10000

Figure 7: Relative metrics of Linear Discriminant Anal-
ysis

Receiver operating characteristic

1.0

0.8 4

4
o

True Positive Rate
o
=

0.2 4

e —— LDA (area = 0.85)

0.0 0.2 04 0.6 0.8 10
False Positive Rate

Figure 8: ROC of Linear Discriminant Analysis

precisi recall f1-score support

0 0.79 0.81 0.80 4957

1 0.81 0.79 0.80 5043

accurac; - - 0.80 10000
macro avg 0.80 0.80 0.80 10000
weighted avg 0.80 0.80 0.80 10000

Figure 9: Relative metrics of Quadratic Discriminant
Analysis

Receiver operating characteristic

101 ~7
-
,"/
0.8 4 1‘,
o /”
v 0.6 e
= e
7 7
& L
2 0.4 .~
= e
"
-
-~
0.2 ,/'
-~
o —— QDA (area = 0.80)
0.0 T T T T
0.0 0.2 04 0.6 0.8 10

False Positive Rate
Figure 10: ROC of Quadratic Discriminant Analysis

Hence, LDA performs slightly better than QDA
method. For QDA, the precision and recall are smaller
than its accuracy, which means there is an imbalance

in the performance of the model in terms of classifying
positive and negative sentiments. Therefore, LDA fits
our data better.

3.5 K-Nearest Neighbors

In our project, we have opted for the K-Nearest
Neighbors (KNN) method due to its simplicity, ease
of implementation, and adaptability to various types of
datasets. KNN is particularly useful when the under-
lying data distribution is not well understood or when
the relationships between features are complex. In the
context of selecting the hyperparameter k, we have cho-
sen a value of approximately \/n, where n represents
the number of data points. This choice aligns with
the heuristic of using the square root of the dataset
size as it strikes a balance between capturing local pat-
terns in the data and avoiding overfitting. By set-
ting k to v/n (k = 223), we aim to ensure that the
algorithm considers a reasonable number of neighbors
for making predictions, avoiding both underfitting and
excessive sensitivity to outliers. This approach lever-
ages the benefits of KNN while providing a pragmatic
strategy for determining the neighborhood size in our
project. Indeed, while K-Nearest Neighbors (KNN) of-
fers simplicity and versatility, it does come with com-
putational challenges, especially when implemented in
Python for large datasets. The efficiency concern arises
primarily due to the exhaustive search for nearest neigh-
bors, which can be computationally expensive, espe-
cially with an increasing number of data points.

For our model, we choose a brute-force search that
directly computes the distances between the query
point and all points in the dataset, then selects the k
nearest neighbors after sorting. The way we calculate
distances is by Euclidean distances because this metric
is simple to implement and sensitive to the magnitude
of differences between each feature.

After applying this model to our dataset, we gener-
ated the following results:

Receiver operating characteristic

101 7

e

®
N,

\,

True Positive Rate
4
o
\,
N

o

kS

\
\,

0.2 e

e —— KNN (area = 0.71)

0.0

0.0 0.2 04 0.6 0.8 10
False Positive Rate

Figure 12: ROC of K-nearest neighbors

Based on the results, we find that KNN model has
a higher rate of precision for the positive class and re-
call for the negative class. This means it performs well
in making accurate positive predictions. However, the
slightly small fl-score and accuracy represent that this
model does not provide a balanced measure. More-
over, KNN is computationally expensive to calculate
distances between points in a high-dimensional dataset
like ours. Therefore, we may not consider this model.

3.6 Support Vector Machine

We apply the support vector machine to our dataset.
This method finds a hyperplane to separate our data
linearly into distinct classes with maximal margins (Hsu
et al., 2010). We choose to apply the LinearSVC from
the scikit learn package. LinearSVC implements a one-
vs-rest scheme (Elbagir and Yang, 2018).

Firstly, we select the [2 penalty to add a regular-
ization term to penalize large coeflicients, preventing
overfitting and making the model more robust. Then,
we use the squared hinge loss function, a differentiable
loss function, to penalize points on the wrong side of
the decision boundary (Chu et al., 2002).

After training the Linear Support Vector Classifi-
cation model, we receive the following results from the
testing dataset:

precision recall f1-score support

0 0.87 0.83 0.85 4957

1 0.84 0.87 0.86 5043

accuracy - - 0.85 10000
macro avg 0.85 0.85 0.85 10000
weighted avg 0.85 0.85 0.85 10000

recall

fl-score

support

0

0.75

0.60

0.67

4957

1

0.67

0.81

0.73

5043

accuracy

0.71

10000

macro avg

0.71

0.71

0.70

10000

weighted avg

0.71

0.71

0.70

10000

Figure 11:

ROC of K-nearest neighbors

Figure 13: relative metrics of SVM

From this result, we can find that this model has
high precision, recall, and accuracy. However, similar
to KNN, support vector machines can also be compu-
tationally expensive when dealing with large datasets.
Therefore, though it performs well, we may still need
to do a further comparison with similar methods such
as Logistic Regression to generate the final choice.

4 Conclusion and Discussion

4.1 Result Evaluation

We first compare some statistics regarding our mod-
els.

Logistic Reg
mae 0.1452
mse 0.1452
rmse 0.3811

2 0.4192

Rand Forest LDA QDA GNB KNN SVM
0.2291 0.1536 0.2012 0.3207 0.2939 0.1483
0.2291 0.1536 0.2012 0.3207 0.2939 0.1483
0.4786 0.3919 0.4486 0.5663 0.5421 0.3851
0.0836 0.3856 0.1951 -0.2829 -0.1757 0.4068

Figure 14: Stats Table

Based on these results, we find that the mean square
error of Logistic Regression, Linear Discriminant Anal-
ysis, and Linear Support Vector Classification are rel-
atively smaller than other models, which means these
three models’ predictions are closer to the actual data.
Also, the R-square of the Quadratic Discriminant Anal-
ysis, Random Forest, Gaussian Naive Bayes, and K-
Nearest Neighbors are low or negative, showing that
these four models may not fit our data.

Besides comparing the statistics, we also create an
accuracy table as shown in the following figure.

I [Logistic Reg | RandForest | 1DA | opA | oNB | ®ww | svMm |
08548 | 07709 | 08464 | 07988 | 0679 | 07061 | 08517 |

| acouracy |

Figure 15: Accuracy Table

Based on this table, the accuracy reflects that Lo-
gistic Regression, Linear Discriminant Analysis, and
Linear Support Vector Classification have a similarly
high accuracy in classifying the reviews into positive
and negative groups. Therefore, they are the valid and
appropriate model we will use for our dataset.

4.2 Limitation

Firstly, the absence of explicit consideration for
potential class imbalance within the sentiment labels.
This could potentially introduce bias in the model, fa-
voring the more prevalent sentiment class.

Another limitation lies in the lack of a Cross-
Validation strategy. The absence of k-fold cross-
validation raises concerns about the reliability of the
estimates for the model’s performance.

Additionally, the text pre-processing choices of the
project, such as lemmatization and special character
removal, may impact the models’ performance. The
decisions during pre-processing could influence the per-
formance of the model.

Finally, the choice of reducing features using Princi-
pal Component Analysis (PCA) based on a cumulative
explained variance threshold might introduce variabil-
ity in model performance. The use of this reduction
method could potentially affect the results.

4.3 Future Work

1. Addressing Class Imbalance: In addition
to the future work to solve the limitation of

the project, we can address potential class im-
balance by employing techniques like oversam-
pling, undersampling, or utilizing specialized al-
gorithms like SMOTE (Synthetic Minority Over-
sampling Technique). These methods can ensure
a more balanced representation of sentiments in
the dataset, preventing biases towards the major-
ity class.

2. Robust Cross-Validation Strategy: Imple-
menting a robust cross-validation strategy, such
as k-fold cross-validation, assumes paramount
significance within the experimental framework.
This approach will yield more reliable estimates
of model performance, promoting confidence in
the models’ ability to generalize to unseen data.

3. Handling Pre-processing Challenges: To
tackle challenges stemming from pre-processing
choices, particularly lemmatization and special
character removal, explore the integration of deep
learning models. Architectures like Long Short-
Term Memory (LSTM) networks or attention
mechanisms are adept at capturing intricate re-
lationships within textual data, offering a more
nuanced understanding(Olah, 2015).

4. Optimizing Feature Reduction: Fine-tuning
the cumulative explained variance threshold in
Principal Component Analysis (PCA) is essential.
This optimization seeks to strike a balance be-
tween effective feature reduction and maintaining
optimal model performance.

References

[1] Bing Liu, Minging Hu and Junsheng Cheng. ”Opin-
ion Observer: Analyzing and Comparing Opinions
on the Web.” Proceedings of the 14th International
World Wide Web conference (WWW-2005), May 10-
14, 2005, Chiba, Japan.

[2] Chu, W., Ong, C. J., & Keerthi, S. S. (2002). A
note on least squares support vector machines. Tech-
nical Report, CD-02-09.

[3] Elbagir, S., & Yang, J. (2018). Senti-
ment analysis of Twitter data wusing machine
learning techniques and Scikit-Learn. Proceedings
of the 2018 International Conference on Al-
gorithms, Computing and Artificial Intelligence.
https://doi.org/10.1145/3302425.3302492

[4] Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A
practical guide to support vector classification.

[5] Khyani, D., Siddhartha, B. S., Niveditha, N. M., &
Divya, B. M. (2021). An interpretation of lemmati-
zation and stemming in natural language processing.

Journal of University of Shanghai for Science and
Technology, 22(10), 350-357.

[6] Martins, C. (2023). Gaussian naive Bayes explained
with Scikit-Learn. Built In.

[10] Pereira, J. M., Basto, M., & Silva, A.
F. (2016). The Logistic Lasso and ridge re-
[8] Minging Hu and Bing Liu. ”Mining and Summa- gre;sion in predicting coTp orate failure. = Pro-
rizing Customer Reviews.” Proceedings of the ACM Zi;hj Y, /Edf)(;?lojﬂl/llcg s glngl /s ;;;7;7512?’ 1 12}% 0 106304_641'
SIGKDD International Conference on Knowledge s 0T/ 10))
Discovery and Data Mining (KDD-2004), Aug 22-
25, 2004, Seattle, Washington, USA. [11] Wold, S., FEsbensen, K., & Geladi, P.

[9] Olah, C. (2015). Understanding LSTM Networks. (1987). Principal component analysis. Chemometrics

colah.github.io/posts/2015-08- Understanding- and Intelligent Laboratory Systems, 2(1-3), 37-52.
LSTMs/ https://doi.org/10.1016/0169-7439(87)90094-9

[7] Mbaabu, O. (2020). Introduction to random forest
in machine learning. Section.

